

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Main Features

These are features in development for the v0.1/v0.0.1 roadmap.

	hypertext representation for file-based content.

	Text markup languages (md, rst, text-feature-docs)

	Server side templates (pug)

	Scripts (js, coffee, requirejs)

	Stylesheets (sass, less, styl)

	Diagrams (gv, plantuml)

	Data (bookshelf-api, db-feature-docs)

	Resources (http)

	Services (pm2)

	work in progres: hypertext protocol support, abstract resources.

	HTTP Redirect

	Static resources

	Planned: variant resources

	Work in progress: proxy resources

	work in progress: re-usable, and distributed packages of routes and
resources.

	YAML and JSON based setup.
Look at alternatively to operate from argv/env iso. local Sitefile

	work-in-progress: user-defined extensions, extendable resources/routers
(route-feature-docs)

	packages (JS/CSS/media), cdn config? (require-js-feature-docs)

	work in progress: a default or ‘base’ client,
with decent support for all routes (html5-client-feature-docs)

	Text Markup Feature

	Router Feature

	HTML5 Client Feature

	DB Feature

Other development features:

	Testing Feature

	Documentation Feature

	examples

Documentation

The Main documents are and will be reStructuredText. But for more flexibility
the administration of several other documents is for now at once done in the
TODO document. Some integrate them here later. First, more use-cases
in the feature docs. And ideally some kind of feedback from a BDD test setup.

Sections:

	Hacking

	Design

	Roadmap

	Tasks and Bugs

	Project Tooling

	Manual initial sketchbook on usage.

Ideas

There are many possibly useful directions:

	transliterature browser, research tooling

	embedded issue browser/editor.

	a local Wiki, or notebook with in-browser editing. And what about tiddlywiki?
Portabel, traveling content.

	viewer for media files

	3D meshes using webGL

	diagramming, dashboards, log viewers, other interactive apps defined in local
“sketchbooks”. Akin to Processing, Arduino, but geared towards Web content.
Ie. to prototype a JS, or quickly get some templated boilerplate HTML using
Pug. Or CSS with SASS/SCSS/Stylus/LESS et al.

	Other web-related files: browse bookmarks, references. Taking notes from
online content easily is a big use-case.

	Also bookmarklets. User-defined tools to use in navigation, editing. Maybe
some kind of bookmarklet cdn to ship, update, generate, version bookmarklets?

	An simple URL carroussel/slideshow app? An image book, like pinterest.
Or a quote book. Lyrics or music trivia collection.

	Interact with JSON data, API’s.

	work with metadata, schemas, use jsonary [http://jsonary.com/] or json-editor. Go from YAML to JSON
to some programming markup and back.

	Provide an in-browser IDE experience, support NPM, Bower or other packages.
CommonJS modules. Projects with Makefile, Gruntfile. Is excuberant CTags too
far back?

Branch docs

	master *

	
	Basic functionality; static, redir routers.

	Document handlers: rst2html, docutils, markdown.

	Scripts: CoffeeScript, Shell.

	PNG Diagrams: Graphviz.

	CSS Stylesheets: Stylus.

	HTML/XML template expressions: Pug (formerly Jade).

	features

	
	db-*

	Looking for database to HTTP endpoints, but also may want to support
a backend in core. See DB Feature docs.

	db-knex

	Bookshelf is an ORM using Knex. Look for an HTTP API.

	db-odata

	
	Exploring odata for server-side API for richer document/clients.
Would need something Express compatible. But can create another server
and implement only some fancy redir router for sitefile.

	odata-server

	Define entity and set, like backbone, and serve. MongoDB or SQLite.
See example/odata. Mostly OData-2.0, some 3.0.

	node-odata

	Looks similar. OData-4.0. MongoDB only but other common systems planned
(0.7.12).

	n-odata-server

	Multiple backend, lightweight, nearly complete OData API (v2). JSON.
But for the lookback framework. Maybe a nice supplement to serve data
besides Sitefile service. Created x-loopback project

First look at Loopback framework in x-loopback.
Keep focus for Sitefile dev. on client/middleware.

	Command Line

	
	f_sitebuild

	
	Compiling a sitefile to a distributable package.
Trying to call handers directly, not usable yet.

Maybe scraping from some edit-decision-list [EDL] generated from sitefile directly is a better (faster) approach?
But need to build and test EDL export, and have no EDL reader (transquoter, Scrow).

	Routers

	
	html5-client

	HTML5 Client Feature

	jsonary

	
	Looking at jsonary as a client-side JSON schema renderer/editor.

	f_ph7{,_node}

	
	Wanted to run simple PHP files using sitefile.
Tested ph7-darwin NPM packages. Seems to perform same as ph7.
No stdout reroute yet so unusable, but functional.

	json-editor

	
	Added JSON-Editor [https://github.com/jdorn/json-editor] with one schema, no server-side api yet.
Need to look at hyper-schema.

	bootstrap

	
	Added bower things for bootstrap, testing with server-side Jade pages.

	graphviz

	
	Adding graphviz to render dot diagrams.

	pm2

	
	Testing a bit with programmatic API acccess in bin/manager.

	Maybe router for starting PM2 processes from JSON, but pm2 can already
do this. Perhaps some simple template to link to running HTTP
host/port, because a simple list of host/port is still missing.
Ie. an HTTP/HTML app aware view of the services would be nice,
fetch the OPTIONS, html/head/title, etc.

Ability to interact with PM2 from HTTP would be useful. Ie. in the
google-chrome-htdocs extension.

	Can simply use JSON for pm2 start, can it use this same structure
with pm2.start API?

http://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/#ecosystemjson

	bundles

	
	Looking for a resource bundle model.

	webpack

	
	Want to bundle content; package router or resource extensions to
sitefile.

Finished writing a simple gulp to compile all to a single module.
But what next? Go for non-npm installations? Would need to pack
dependent libs.

More interesting is packing routers and themes and stuff.
Merged into bundles.

	require-js

	
	Setting up for integrated module configuration. Want to get stack up
using require-js. See Router Feature and RequireJS Feature
docs.

	api-docs

	
	Want to look at JSDoc features. http:/doc/literate

	But first set up a docco build to see current docs. http:/doc/api

	Documentation Feature: source/API documentation.

	Docco: http:/doc/literate

	gherkin

	
	The Gherkin Feature is for routing gherkin test specifications.
Only generating JSON.

	Added behat initially. But later found cucumber-js.

	Maybe combine JSON with Pug.
For now installed grunt gherkin_report for HTML but its not pretty.

	selenium

	
	Initial mocha+chai+selenium setup

	Testing to see if sf-v0 client initializes

	cdn

	
	Initial cdn router. Later merged with http.

	demo

	
	Merging experimental features. Should keep master clean.

	staging_git_versioning

	
	Merging versioning seed into master.

	test

	
	TODO: get python docutils (grunt exec and pip?) for testenv.

	Was building only this at travis, now building all branches. Need to fix –force tag though.

	*

	Current branch.

	Added Bower. Experimenting with polymer.

	Want to get Polymer core-scaffold running somehow.
See examples and Polymer Getting started.

	Working to add prism.js source-viewer.
See Testing prism.js

[2016-12-13] setup app-0 router for first prototype of base client.

Maybe once (if ever) app is extensible just use app.base:#?

[2016-12-27] testing prism.js. Not sure how to go about upgrading polymer.

[2017-01-07] cleaning new sitefile v0 app a bit for use, and looking at a
polymer and debugging.
would like to start a sort of console.log with visual log polyfill
for the user to monitor the app is working correctly

 [2016-10-10] Branch features/db-knex contains refactored Router code, and
a way to let routers register their own Express objects. This enables
using bookshelf-api, ontop of Knex and BookshelfJS. It leverages REST from
Knex databases with objects defined in JS. Knex also features migration tooling.

	cons

	
	dont want dependencies

	rework for core to use backend

	pro

	
	more effictive lookup of metadata, keeping extensible metadata. 1

	1

	Ie. proper HTTP headers for the entity content; language, format, encoding,
also links (rev/rel; prev/next) etc.

	Data

	See also x-loopback. Maybe keep al backend/auth/data-proxy-middleware out
of Sitefile. Express is better for other middleware.
Maybe some simple
standardized data API, ie. the odata for the TODO app.

But need bigger toolkit too:

	TODO: YAML, JSON validation. Schema viewing. tv4, jsonary.

	TODO: JSON editor, backends, schema and hyper-schema

	Book Understanding JSON Schema [http://spacetelescope.github.io/understanding-json-schema/index.html]

	Article Elegant APIs with JSON Schema [https://brandur.org/elegant-apis]

	Want to look at JSDoc features. http:/doc/api

	But first set up a docco build to see current docs.
http:/doc/docco

	Docco

	Nifty setup, but no support for block comments. 1 2

The idea is pretty good: annotated source-code view of two adjacent panes,
one for highlighted source-code listing (without comments), and right an
empty margin with alineas parallel to where the comments where.

This is not implemented as router but special build setup and route config.

	1

	https://github.com/jashkenas/docco/issues/29

	2

	https://github.com/jashkenas/docco/pull/72#issuecomment-8199556

	PHP

	[2016-12-24] Initial look at JS, PHP tooling. Seems there is no common TAP-like
test result stream. But the parser is quite nice, given AST with line/column
indices to literal elements.

No nested features. One feature per file. Makes sense, or I can live with that
while exploring other options. Tags. Outlines?

Found a nice twig formatter, but have no tests written. 1
so nothing to see yet.

	JS

	Setup selenium webdriver using Chrome after example. 2
FIXME: not seeing how to start up server with any hooks,
may need to provide my own.

	ToDo

	
	See about setting up cucumber-js thingies;

	Need router to stream running process at backend. Can then receive JSON
events in client.

	Not sure about the initial client, could set up some templates though.
Or rather loot at source highlighting router instead.

	Maybe browser tests. But look see for current testing of sitefile in
Testing Feature.

	Other things to test?

	1

	https://github.com/cucumber/gherkin

	2

	https://packagist.org/packages/emuse/behat-html-formatter

	3

	https://github.com/cucumber/cucumber-js/blob/master/docs/nodejs_example.md

 Currently

	Webpack, gulp used to package commonjs2 modules (module.export)
[features/webpack]

	Looking at creating a bundle extension type [features/bundles]

	Know-how to setup require.js tag with main and “boot” page from there,
need a way to package rjs config (or particulary the module mapping parts).

And including the CSS is something we can do simply ourselfs. 1

	1

	FAQ: RequireJS Advanced Usage - What about loading CSS? [http://requirejs.org/docs/faq-advanced.html#css].

Here the authors of requirejs assume that having fallbacks to determine
wether CSS has loaded is not reliable. Seems to me it is a
robustness/maintainability problem, ie. wanting simplicity. Not reliability.

But enfin the docs may be old. Pointing to Dojo #5402, which in turn
points to some Mozilla ticket #185236. But that is solved and FireFox 9
has Stylesheet load events. 2

	2

	MDN: Stylesheet load events [https://developer.mozilla.org/en-US/docs/Web/HTML/Element/link#Stylesheet_load_events]

 Notes on the route attribute in extension modules. Probably consolidate with
Sitefile 0.0.5 route scheme.

Requirements:

	reuse handlers

	possibly specify type of content, and at which endpoints

	standalone use: Sitefile route/… specs for components, JSON pointers [RFC6901]

Use cases

	
	Static files

	TODO: test setup.

	
	Third-party Content Delivery

	TODO: Using the cdn router, serve the first available resource
(local, or global).

Want some CDN-like router.
Provide a list at try each before serving as resource, redirect?

TODO: provide lists of alternative URLs
TODO: optionally have path attribute for routers that like both URL and local
path.

“bootstrap”: “https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/4.0.0-alpha.5/css/bootstrap.min”

	Maybe: provide a base dir prefix for “dynamic” files, ie. those generated
from other files.

But want to override back to normal, on maybe per-route basis?
Use case: some files are checked into SCM, or expected in the working tree.

But for most generated files, don’t pollute?

Maybe alternatively track and cleanup dynamic files on closedown or a special
command.

	TODO: Add shadows to DOT diagrams.

See http:/tools/diagram-shadows.sh

Requires two graphviz renders and an ImageMagick CLI recipe.

Going to have convert.filter router take local options for route.
Need to use path with params, see if glob still kicks in.

And have graphviz accept more params.

JSON API

Peeking at the JSON API spec for attribute names. Now try to pin down where
everything goes.

name: core
route:
 routes: .handler
 routes.res:
 data: []
 errors: []
 meta: {}
 jsonapi: {}
 links:
 self: ''
 related: ''
 included: []

generate:
 handler: (rctx) ->

name: require-js
label: ""
usage: ""
description: ""
defaults: {}
route:
 lib: [
 href: 'bower:require-js/...'
 href: '//cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js'
]
 # TODO: allow for name placeholder as spec, and export name as an
 # overridable optionn? sitefile_core_config_js_route= ?
 main.js: 'file.js:'
 main.json: 'file.js:'
generate:
 config: () ->
docs:
 route:
 config:
 The ~ route holds an optional resource, it could be made easily
 available to the main script resource?
 main:
 The ~ route holds the main script, basically it passes a module mapping
 to require-js and sets off the main require/dependencies.
 lib:
 The ~ is a local route that leads to the require.js dist package to use.
 generate:
 config:
 The ~ generator can create a new require.js main file from examples, or
 restore one.

Recap in accordance with JSON API:

	make routes that provide the actual resource have a data attribute.
make other routes relate .

JSON API example for above Sitefile components.

api.json.yaml:

jsonapi:
 version: "1.0"
included: []
links:
 related: '/core/routes'

core/api.json.yaml:

jsonapi:
 version: "1.0"

core/routes/api.json.yaml:

 jsonapi:
 version: "1.0"

 data: %ctx.routes
 links:
 self: ref(rctx)
 related: ref(...)
}

ref = (rctx) ->
 rctx.site.base + rctx.res.name

Resolver

sitefile.Router.Base.resolve turns a parsed Sitefile route spec into a route
context. This looks like:

name: <name of resource path>
route:
 name: <name or router module>
 handler: <name of handler generator for router>
 spec: <arguments to router.generator>
 options: <defaults + parsed spec + parsed query* >
res:
 data: [] or {} or ...
 jsonapi: version: "1.0"
 meta:
 type:
 errors: []
 links:
 self: //location
 related: //ref

Options are currently extended at request time from the query arguments.
XXX: need some more structured scheme for route.spec, URL.query -> options

XXX: the jsonapi and following res attributes are taken from the JSON API
specs. Not implemented, see Generator spec below.

Generator

sitefile.Routers.generator currently implements resolving to an Express handler
given a route context.

A generator can return a handler function, a router context extension object,
or nothing.

In the latter case it is assumed the router has added its own middleware/routers
to the Express instance.

For the former two, sitefile handles adding the route to Express.
If it is an object, it always extends the route context with it.

To turn the object into a route handler it must have an data or meta.type attribute
at ctx.res. Iow. the extension object at least looks like either:

res: data: [1, 2, 3]
res: meta: type: ''

For data with no type is known, the builtin router named ‘data’ is used.
TODO: If a type is given (set to rctx.res.meta.type) load/look at …?

The data is an instance known at initialization time, or a callback accepting
the resource context to return the instance data per route request.

Resources

TODO: attribute resources, get back at simplicity of:

/url/path: router:my/files/*.xxx

But with a little extra: a seperate data and renderer instance.
Using the meta.type router context defined in Generator, the data
can define its own API type.

So that sitefile can do basic rendering or actions given the proper
type metadata, or router can customize.

And routers can re-use existing data endpoints.

But need to encapsulate this in a terse syntax structure.

This must work:

_id_1: du.html:**/*.md
_id_rst_custom_ext: du.html:**/*.rest
_id_rst_default: du.html:

So iso.:

_foo: foo:**/*.foo

maybe:

**/*.foo: foo:?meta.type=foo.Foo
**/*.foo: foo.view:?strip-ext=true;data=.

/*.bar: bar.view:?strip-ext=false;data=/*.foo

Leave URL path out for 1-on-1 mappins to filesystem.
Ie. the router spec first argument is taken from the rctx.name, and the spec
(a file glob) used ID name.

See Base.resources [http:/doc/literate/Router.html#section-6] comment too.

builtin.data

Simply serve rctx.res.data using JSON.stringify.

	Mocha Router Examples

	Both the client and server tests have hardcoded dependencies. The client can
get off without dependency management, simply by loading additional script
resources into the current page. The server however has to pre-load
globals and needs some sort of dependency injection. Currently the
mocha router hardcodes the chai and Cow dependency.

To re-run mocha in the same Node process, the router needs to clear
the testcase require.cache entries before adding:

mocha = new Mocha()
if testcase of require.cache
 delete require.cache[testcase]

	FIXME: Reporters are not very nice, requiring to hack stdout?
see also Mocha #1457.

	javascript-cow-class

	
	mocha client test example route

	mocha server test example route json-stream reporter

	mocha server test example route json reporter

	mocha server test example route list reporter

	mocha server test example route markdown reporter

	mocha server test example route TAP reporter

	javascript-bookmark-class

	
	mocha client test example route (coffeescript)

	mocha server test example route (coffeescript)

	List of mocha reporters [https://github.com/mochajs/mocha/tree/master/lib/reporters]

	See Mocha Router docstrings for annotated source.

	TODO app_base_sitefile Mocha test docstrings.

	See also Gherkin Feature for docs on related specification markup
format.

The same Mocha client example, but included statically as reStructuredText raw HTML:

Index

	reStructuredText

	Requires python installed.

	Markdown

	Router for native NodeJS implementation.

	Gherkin

	
	Gherkin Feature.

	Testing Feature.

	Outliner

	
	Looked at h5o but only works in browser.
To retrieve, maybe using PhantomJS, probably
require a too complex setup for now.

Sitefile Manual

For node-sitefile.

Contents

	Sitefile Manual

	Intro

	Prerequisites

	Description

	Usage

	Configuration

	Examples

	Details

	Properties

	Specs

	Extensions

	Routers

Sitefile enables an Express server to be quickly set up from a single
configuration file called the Sitefile.
The sitefile mainly consists of a mapping of file paths or patterns that are
mapped to different types of router handlers.

Primarily it was written to serve reStructuredText as HTML, but has Pug, Stylus,
Markdown and Coffee-script handlers too. In its current state it is usable as a
really simple HTTP server to use for example to read documentation of a project.
Maybe as a sketchpad for Pug, Stylus and Coffee-Script experiments.

Focus for upcoming features in on microformats to tie things together and enable
richer presentation while keeping appropiatly simple plain text file-based
content. Possibilities for future development are maybe a sort of mixed content
-type wiki.

Intro

The primary idea is to to look at a file folder as a set of hyperlinked documents,
formatted in various ways as appropiate to the task ie. some project.
Sitefile turns each file into a URL and a handler instance, based on
filepath and name patterns from the Sitefile.

It should be useful for projects that have no webserver of their own, or that
want to defer rendering/browsing of the project documentation and other resources.

Alternative solutions are explored in Sitefile planet section.

Prerequisites

	Python docutils is not required, but is the only document format available.

	Installed coffee (coffee-script) globally (see bin/sitefile sha-bang).

Description

The intended purpose is to implement generic handlers for misc. file-based
resources that are suitable to be rendered to/accessed through HTTP and viewed
in a web browser. For example the ReadMe file in many projects.

To do this, sitefile comes with built-in handlers that take various file formats
and publish usually a HTML equavalent over HTTP. These handlers are simply
Express middleware.

TODO: test this:

Sitefile keeps a single ‘routes’ object with a mapping of all URL, handlers.
The generic syntax to serve all files of a certain extension using the example
handler ‘handler’ is:

_1: handler:**/*.example

The key is simply a unique string, except it needs to start with a ‘_’ and it will be replaced
by the URL determined for each handler instance at runtime.

More elementary, the following makes so a handler ‘handler’ gets initialized
using one argument ‘dir/for/res.example’, and that will be called for requests at
the given URL path:

/path/for/res: handler:dir/for/res.example

sitefile must be started from the directory where a Sitefile.* is located.

See Configuration and Specs for further details.

Usage

In a directory containing a Sitefile.*, run sitefile to start the server.

There are no further command line options.

Configuration

First an example in JSON format. The identical YAML format is also
supported:

{
 "sitefile": { "version": "0.1" },
 "routes": {
 "ReadMe": "rst2html:ReadMe",
 "media": "static:public/media",
 "_docs": "du:doc/**/*.rst",
 "": "redir:ReadMe"
 },
 "specs": {
 "static": {
 },
 "rst2html": {
 stylesheets: ['./media/style/default.css']
 }
 }
}

The format is determined by the filename extension.
Supported Sitefile extensions/formats:

	*.yaml *.yml

	YAML

	*.json

	JSON

Examples

This section works with the handlers from the Sitefile for this project.

The root redirects to this ReadMe file. So does /index.
There is another redirect for ./example to example/main.
Also, there are static Express middleware handlers for the following folders:

	public/media

	public/components

	public/example

The other routes are dynamic, they are expanded at run-time for any files that
exists:

_rst2html: rst2html:**/*.rst

_markdown: markdown:*.md

_pug: pug:example/**/*.pug
_stylus: stylus:example/**/*.styl
_coffee: coffee:example/**/*.coffee
_markdown_1: markdown:example/**/*.md

E.g. TODO or example/script.coffee.
See examples.

Details

On startup a sitefile context is prepared holding all internal program
variables. This context is merged with any sitefilerc found,
and also available as context.static.

XXX: sitefilerc will be described later, if Sitefile schema (documentation) is set up.
Also sitefilerc format is fixed to yaml for now.

The context will have some further program defaults set, and
then the sitefile config is loaded from config/config.
XXX the sitefile config itself can go, be replaced by external
default context rc. There is no real use case or test spec here yet.

Properties

	sitefile

	The version spec for the sitefile version to satisfy. See semver [https://github.com/npm/node-semver] for syntax,
or ChangeLog for values. XXX This could be replaced by a $schema key maybe.

	routes (required)

	A map or table of route-id -> router-spec.

Keys containing a ‘$’ indicate the spec contains a glob pattern,
instead of these keys the basename of the paths resulting from the
glob pattern is used as URL.
are not used.
But otherwise they are used as the URL route.

	specs

	Additional parameters for for each handler.
TODO: see also sitefilerc

Specs

Specs are strings stored as values in the sitefile.routes metadata table.

A router-spec includes the router and handler name followed by a ‘:’

router_name.handler_name:<handler-spec>

where each router should have a default handler name, given a shorter spec:

router_name:<handler-spec>

What follows after the semicolon (‘:’) is either a opaque string to be passed
directly to the handler implementation, or an glob pattern.

Current situation/plan:

_<route-id>: <router>:<path-or-glob>

path$<param>/path: <router>:<pg>

/path/literal.ext: <router>:<pg>

/prefix/^: <router>:<pg>

TODO: no prefixing tested yet. Also see Router feature docs.

Mapping exts:

_<route-id>.<ext>: <router>:<pg>.<ext>

	reg:

	<ext>: <mime>
txt: text/plain

XXX specs contain as little embedded metadata as possible, focus is on
providing parameters through context (or rc) first. Some URL patterning maybe
called for but currently sitefile relies on either static or (fs) glob-expanded URL
paths.

Currently the following routers are provided:

	rst2html: reStructuredText documents (depends on Python docutils)

	du: a new version of rst2html with support for globs and
TODO: all docutils output formats (pxml, xml, latex, s5, html)

	pug:

	coffee:

	stylus:

	static use expres.static to serve instance(s) from path/glob spec

and

	redirspecify a redirect FIXME glob behaviour?

For details writing your own router see Routers.

Extensions

Routers

	Place file in src/dotmpe/routers/

	module.export callback receives sitefile context, XXX should return:

name: <router-name>
label: <title,readable-name>
generate: (<handler-spec>, <sitefile-context>) ->
 (req, res, next) ->
 # ...
 res.write ...
 # call res.end or res.next, etc.

	master *

	
	Basic functionality; static, redir routers.

	Document handlers: rst2html, docutils, markdown.

	Scripts: CoffeeScript, Shell.

	PNG Diagrams: Graphviz.

	CSS Stylesheets: Stylus.

	HTML/XML template expressions: Pug (formerly Jade).

	features

	
	db-*

	Looking for database to HTTP endpoints, but also may want to support
a backend in core. See DB Feature docs.

	db-knex

	Bookshelf is an ORM using Knex. Look for an HTTP API.

	db-odata

	
	Exploring odata for server-side API for richer document/clients.
Would need something Express compatible. But can create another server
and implement only some fancy redir router for sitefile.

	odata-server

	Define entity and set, like backbone, and serve. MongoDB or SQLite.
See example/odata. Mostly OData-2.0, some 3.0.

	node-odata

	Looks similar. OData-4.0. MongoDB only but other common systems planned
(0.7.12).

	n-odata-server

	Multiple backend, lightweight, nearly complete OData API (v2). JSON.
But for the lookback framework. Maybe a nice supplement to serve data
besides Sitefile service. Created x-loopback project

First look at Loopback framework in x-loopback.
Keep focus for Sitefile dev. on client/middleware.

	Command Line

	
	f_sitebuild

	
	Compiling a sitefile to a distributable package.
Trying to call handers directly, not usable yet.

Maybe scraping from some edit-decision-list [EDL] generated from sitefile directly is a better (faster) approach?
But need to build and test EDL export, and have no EDL reader (transquoter, Scrow).

	Routers

	
	html5-client

	HTML5 Client Feature

	jsonary

	
	Looking at jsonary as a client-side JSON schema renderer/editor.

	f_ph7{,_node}

	
	Wanted to run simple PHP files using sitefile.
Tested ph7-darwin NPM packages. Seems to perform same as ph7.
No stdout reroute yet so unusable, but functional.

	json-editor

	
	Added JSON-Editor [https://github.com/jdorn/json-editor] with one schema, no server-side api yet.
Need to look at hyper-schema.

	bootstrap

	
	Added bower things for bootstrap, testing with server-side Jade pages.

	graphviz

	
	Adding graphviz to render dot diagrams.

	pm2

	
	Testing a bit with programmatic API acccess in bin/manager.

	Maybe router for starting PM2 processes from JSON, but pm2 can already
do this. Perhaps some simple template to link to running HTTP
host/port, because a simple list of host/port is still missing.
Ie. an HTTP/HTML app aware view of the services would be nice,
fetch the OPTIONS, html/head/title, etc.

Ability to interact with PM2 from HTTP would be useful. Ie. in the
google-chrome-htdocs extension.

	Can simply use JSON for pm2 start, can it use this same structure
with pm2.start API?

http://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/#ecosystemjson

	bundles

	
	Looking for a resource bundle model.

	webpack

	
	Want to bundle content; package router or resource extensions to
sitefile.

Finished writing a simple gulp to compile all to a single module.
But what next? Go for non-npm installations? Would need to pack
dependent libs.

More interesting is packing routers and themes and stuff.
Merged into bundles.

	require-js

	
	Setting up for integrated module configuration. Want to get stack up
using require-js. See Router Feature and RequireJS Feature
docs.

	api-docs

	
	Want to look at JSDoc features. http:/doc/literate

	But first set up a docco build to see current docs. http:/doc/api

	Documentation Feature: source/API documentation.

	Docco: http:/doc/literate

	gherkin

	
	The Gherkin Feature is for routing gherkin test specifications.
Only generating JSON.

	Added behat initially. But later found cucumber-js.

	Maybe combine JSON with Pug.
For now installed grunt gherkin_report for HTML but its not pretty.

	selenium

	
	Initial mocha+chai+selenium setup

	Testing to see if sf-v0 client initializes

	cdn

	
	Initial cdn router. Later merged with http.

	demo

	
	Merging experimental features. Should keep master clean.

	staging_git_versioning

	
	Merging versioning seed into master.

	test

	
	TODO: get python docutils (grunt exec and pip?) for testenv.

	Was building only this at travis, now building all branches. Need to fix –force tag though.

	*

	Current branch.

Sitefile planet

A section looking at alternatives or comparable projects from the Node.JS sphere.

	harp [http://harpjs.com]

	enables filesystem-based content for websites too, but does so in a
project-generator type of fashion.

Sitefile is unobtrusive, except for some configuration file.
Also sitefile does not focus on providing an development platform,
harp is far more extended. some concepts such as asset management (styles,
images) are interesting.

	Meteor [https://www.meteor.com/]

	Like harp, Meteor is an development platform.
Meteor especially promotes its generator/deploy mechanism.
More than I’ve seen with harp though, Meteor provides for an re-integration of
the client and backend sides, presumably using web sockets.
(Meteor renders client side, presumably using some web-sockets based RPC.
It needs add. components to render server-side for non-JS clients)

There is no discussion on the deployment systems, and I presume this makes the
only valid target servers meteor enabled servers. It would be great is the
server for the integrated backend/frontend environment was portable or
cross-compilable. See also HaXe [http://haxe.org].

	Docutils reStructuredText [http://docutils.sourceforge.net/rst.html]

	It does not appear that rSt is that popular with the Node.JS crowd.
Even with Sphynx and the like it looks like it has not gained much traction beyond Python.

One popular? node module is actually to convert rst to markdown [https://nodejsmodules.org/pkg/rst2mdown].

	Node.JS

	It’s so simple to aggregate rich apps with Node.JS and NPM that Sitefile unless it grows is not so much needed.
Even without Express and standard libraries only: https://gist.github.com/ryanflorence/701407
And just for static files: http://www.sitepoint.com/serving-static-files-with-node-js/

	node-static [http://harpjs.com]

	Makes easy streaming of files. Would be nice to integrate with for media centers
with Sitefile HTML UI?

	wiki-server [https://www.npmjs.com/package/wiki-server]

	“A Federated Wiki Server”

	GIT based wikis

	
	Gollum

	Realms [https://github.com/scragg0x/realms-wiki], a “Git based wiki written in Python Inspired by Gollum, Ghost, and Dillinger”

	Jingo [https://github.com/claudioc/jingo] “Node.js based Wiki”.

Something to look at. Given its GIT based store and Wiki formatting this may provide for another interesting file-based content router.

	Editors

	
	Dillinger [http://dillinger.io/]

	“Dillinger is a cloud-enabled, mobile-ready, offline-storage, AngularJS
powered HTML5 Markdown editor.”

	Ghost [https://github.com/tryghost/Ghost]

	“A simple, powerful publishing platform https://ghost.org”

reStructured Text documenation tooling

	Sphynx [http://sphinx-doc.org/]

	Python documentation generator based on Du (ie. rSt to HTML, LaTex, etc.)

Provides some additional reStructuredText directives, uses its own
publisher chain.

	Nabu [https://bitbucket.org/blais/nabu]

	Document publishing using text files.

Provides an extractor framework for regular Du transforms to turn into data
extractors.
Extractors are paired with storage instances, of which Nabu provides some SQL
compatible baseclasses.
Indexed external metadata can then by used by other systems, such as a blog
publisher.

Potentially, Du transforms can rewrite documents and ie. enrich references and
various sorts of embedded metadata.
For a complete setup, this would require a reStructuredText (re)writer however.

	pandoc [http://johnmacfarlane.net/pandoc/]

	A pretty heroic “swiss-army knive” doc-conv effort in Haskell.

It is not completely compatible with Python Docutils rSt, but does an pretty
amazing job on converting rSt and a few dozen other formats with each other.
Worth a mention, without it being used by sitefile (yet).

Other Non-NodeJS-related Topics

	Markdown [http://daringfireball.net/projects/markdown/]

	Markdown is less well defined and in general far less capable than reStructuredText,
but very suited for simple marked up text to HTML conversions.

Its simplicity is only one likely cause that it is far more popular across various web-related projects.
Commercial suites from Atlassian elaborate on a similar plain text editor formats.

	TiddlyWiki [http://tiddlywiki.com]

	“a non-linear personal web notebook”

Not opened in years and never really used it, but the concept is really nice.
May already provide some Node.JS integration.

	Jekyll [https://github.com/jekyll/jekyll]

	“Jekyll is a blog-aware, static site generator in Ruby”

	via

	GitHub Pages - Using Jekyll with Pages [https://help.github.com/articles/using-jekyll-with-pages/]

	HaXe [http://haxe.org]

	Has nothing to do with publishing, but looking at deployment options it has some
interesting feats to mention in addition to Harp, Meteor and Jekyll.

HaXe is an ECMA-script language with compilers for a number of other
high-level languages, including PHP and JS. It also provides for
RPC setups for use on clients, and an ORM system.
Its API is nearly cross-platform. Making it very interesting to use it for
writing not only clients, but also servers that support a certain publishing
stack.

0.0.1

	status

	finished

	started

	2015-03-28

	commit

	2015-04-19 05:28:14 +0200 679a2edeed90e1c9a795c23daaaa57674f19e448

Never tagged. Some revisions where made and the 0.0.2 bump was really skipped
without any development. The next development release was 0.0.3.

0.0.3

	status

	finished

	started

	2015-04-19

	commit

	2015-11-13 00:33:45 +0100 4c39bf1047de76c0e98f697aa8aa6e607d041b25

Worked on project tooling (Bower, Grunt, Travis CI etc.) and ended up with
intended release not installing correctly, never tagged. After 0.0.3-test dev
silently continued in 0.0.4-dev (2016-09-24).

	Added project versioning scripts and other build scripts.

0.0.4

	status

	released

	started

	2016-09-24

	commit

	2016-10-14 23:21:45 +0200 1ad68e4918a92ea295c63a8014ef62d1923c5d13

More parallel development on JSON schema features, data API, rich HTML5 clients.
Released for simple Bookshelf API based router.

	Testing project publishing scripts.

	Added graphviz.

	Looking at jsonary, polymer in derived branches.

	Added scripts param for rst2html, moved most code to Du router.

	Rewrote core to allow routers to extend Express by themselves (for DB
Feature). Added Knex/Bookshelf/API for access to SQL data.

	Cleaned up file-to-resource heuristics and made it more consistent.

(0.0.5)

	status

	dev

	started

	2016-10-14

	released

	

	Rewrite of all contexts: handler/resolver are merged now. Root context has
new structures paths and site. paths.routers makes it possible
to load extension routers from custom paths.

Router initialization extends on regular objects until router is initialized,
then creates proper subContext. It uses new attributes methods and
handlers in addition to existing router and res.

	Renamed Sitefile.{yaml,json} params attribute to options like
the object in the resolver context to keep term diversity low.

	Refactored router.generate so it can 1. return data or data callbacks
iso. Express handlers and 2. only extend the context w/o. providing any
handler. See Router feature

	Went through all of the ReadMe and split into Manual and Dev docs.
Began drafting setup and customization guide.

	Added grunt build with docco for document generator,
and SASS for packaging some default styles.

	Added Twitter bootstrap, jQuery, lodash build with grunt/webpack.
Removed old default.js script.

	New URL path query parsing.

TODO: Preparing to add require.js client.

FIXME: Sitefile need some knowledge of Style and Script resources, both path
and URL. Maybe bundle them. Or better use resources exported from routers.

FIXME: tie to a nodelib version!

	
dev-notes

	

<release-tag>

	<release description>

	status

	
	enum

	draft|dev|finished|released

	started

	
	type

	date-time

	released

	
	type

	date-time

	commit

	
	type

	datetime+commit-sha1

	<notes>

Getting Started

Run your first Sitefile

Define a file like the following to let sitefile add every known file to the
site. TODO: You can generate a YAML file with:

sitefile init [AUTO-EXPORT-ROUTERS...]

The [...] argument indicates an optional space separated list of router
names. In any case a simple example Sitefile is generated to start with.

Sitefile.yml:

sitefile: 0.0.5-dev
paths:
 routers: [
 'sitefile:example/routers'
 './routers'
]
auto-export:
 options: ['*']
 routes: ['*']
routes: {}
options: {}

	TODO: this should export all known routers using their supplied default mappings

	TODO: this should include the example extension router

Now, upon executing sitefile next to this file, every route on the site is
printed out and served via HTTP.
Depending on the files and routers the paths are now available as HTML, JS, CSS
or more complex resources and can be viewed in a local browser.

The asterixes in the auto-export attribute causes Sitefile to use
a presupplied example mapping and options for every available router.

You may want to review the available routers depending on the files you wish
to serve, and instead provide a restricted list of routers to auto-export.

Building a local website

Next you will want to build a site out of standalone files,
basicly by filling out the routes and options attributes of the
Sitefile. These and other available attributes are documented at
Sitefile format, and that concludes the ‘Getting Started’ guide.

	TODO: the routers and their default routes/options should be documented

FIXME: sitefile currently cannot edit content, except for some database based
handlers.
However Sf 0.0.5 does accepts new routers.
You can continue to read about adding a local extension router.

Adding a local extension router

This is step two of the setup guide, `getting started`_.

Setting up a site with Sf will involve using file formats the can be parsed
into structured representations, and served in ways that a browser understands.
Iow. content that can be rendered as hypertext, scripts, stylesheets or other
(streamable) media are initial candidates.

Sf can be used to prototype such resources for those that want to write coffee
script or javascript.

The following is an setup for a 0.0.5 Sf router.

routers/myRouter.coffee:

module.exports = (ctx) ->

 name: 'myRouter'

 globspec: false
 expand: (spec) ->

 defaults:
 example-argument:
 routes:
 options: {}

 generate:
 default: (rctx) ->
 (req, res) ->
 res.write('Hello World!')
 res.end()

 data: (rctx) ->
 res: data: {}

 data-async: (rctx) ->
 res: data: -> {}

 example-argument: (rctx) ->
 res: data: rctx.res.options

 mapping: (rctx) ->
 route:
 '.html': '.view'
 '.js': '.script'
 '.json': '.data-example'

 data-example: (rctx) ->
 res: data: [
 id: 1, name: 'one'
 id: 2, name: 'two'
 id: 3, name: 'three'
]

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

